Methylmercury is an extremely potent neurotoxin often found in aquatic ecosystems. Humans are therefore at risk of methylmercury poisoning due to the mass consumption of aquatic creatures. It is thus vital to quantify the accumulation of methylmercury in aquatic mammals. A model was developed to study the accumulation of methylmercury in pilot whales’ brains. Of particular interest is the toxin’s rate of transference from the brain to the blood. Based on the model and a system of mass balance differential equations, a significant correlation between food intake and accumulation of inorganic mercury in the brain due to the conversion from organic mercury was also found for a range of age groups.

Themes:
Check (highlight) the most applicable theme according to the abstract.

| Innovation and Technology | Health and Wellness | Culture and Society | X Sustainability and Conservation |

Comments:

Short and sweet – but maybe too short.

Not clear in the abstract how human effects relate to pilot whale and why rate of transference from brain to blood is of particular interest.

I would suggest more information regarding how methyl mercury gets into fish and bioaccumulation through the food chain so can see the relevance of findings in pilot whales to humans, even though generally do not consume whale